
Package: queue (via r-universe)
August 13, 2024

Title Simple Multi-Threaded Task Queuing

Version 0.0.2

Description Implements a simple multi-threaded task queue using R6
classes.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Imports callr, cli, R6, tibble

URL https://github.com/djnavarro/queue, http://djnavarro.net/queue/

BugReports https://github.com/djnavarro/queue/issues

Suggests covr, knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

Repository https://djnavarro.r-universe.dev

RemoteUrl https://github.com/djnavarro/queue

RemoteRef HEAD

RemoteSha 4c70aad373fd518250c6bd6c29cebccb6d16dc65

Contents
Queue . 2
Task . 4
TaskList . 8
Worker . 11
WorkerPool . 13

Index 17

1

https://github.com/djnavarro/queue
http://djnavarro.net/queue/
https://github.com/djnavarro/queue/issues

2 Queue

Queue R6 Class Representing a Multi-Worker Task Queue

Description

A Queue executes tasks concurrently using multiple workers.

Details

The Queue class is primary interface provided by the queue package. It allows users to execute an
arbitrary collection of tasks in parallel across multiple R sessions, managed automatically in the
background. Once a new queue is initialised, tasks can be added to the queue using the add()
method. Once all tasks are added, they are executed in parallel by calling the run() method.
When completed, run() returns a tibble that contains the results for all tasks, and some additional
metadata besides.

Internally, a Queue uses a TaskList object as its data store and a WorkerPool object to execute
the tasks in parallel. These objects can be accessed by calling the get_tasks() method and the
get_workers() methods. Usually you would not need to do this, but occasionally it can be useful
because those objects have some handy methods that allow finer-grained control (see the documen-
tation for TaskList and WorkerPool respectively).

Methods

Public methods:
• Queue$new()

• Queue$add()

• Queue$run()

• Queue$get_workers()

• Queue$get_tasks()

• Queue$clone()

Method new(): Create a task queue

Usage:
Queue$new(workers = 4L)

Arguments:

workers Either the number of workers to employ in the task queue, or a WorkerPool object to
use when deploying the tasks.

Returns: A new Queue object

Method add(): Adds a task to the queue

Usage:
Queue$add(fun, args = list(), id = NULL)

Arguments:

Queue 3

fun The function to be called when the task is scheduled
args A list of arguments to be passed to the task function (optional)
id A string specifying a unique identifier for the task (optional: tasks will be named "task_1",

"task_2", etc if this is unspecified)

Returns: Invisibly returns the Task object

Method run(): Execute tasks in parallel using the worker pool, assigning tasks to workers in
the same order in which they were added to the queue

Usage:
Queue$run(
timelimit = 60,
message = "minimal",
interval = 0.05,
shutdown = TRUE

)

Arguments:
timelimit How long (in seconds) should the worker pool wait for a task to complete before

terminating the child process and moving onto the next task? (default is 60 seconds, but this
is fairly arbitrary)

message What messages should be reported by the queue while it is running? Options are
"none" (no messages), "minimal" (a spinner is shown alongside counts of waiting, running,
and completed tasks), and "verbose" (in addition to the spinner, each task is summarized as
it completes). Default is "minimal".

interval How often should the task queue poll the workers to see if they have finished their
assigned tasks? Specified in seconds.

shutdown Should the workers in the pool be shut down (i.e., all R sessions closed) once the
tasks are completed. Defaults to TRUE.

Returns: Returns a tibble containing the results of all tasks and various other useful metadata.
Contains one row per task in the Queue, and the following columns:

• task_id A character string specifying the task identifiers
• worker_id An integer specifying the worker process ids (pid)
• state A character string indicating the status of each task ("created", "waiting", "assigned",

"running", or "done")
• result A list containing the function outputs, or NULL
• runtime Completion time for the task (NA if the task is not done)
• fun A list containing the functions
• args A list containing the arguments passed to each function
• created The time at which each task was created
• queued The time at which each task was added to a Queue

• assigned The time at which each task was assigned to a Worker

• started The time at which a Worker called each function
• finished The time at which a Worker output was returned for the task
• code The status code returned by the callr R session (integer)
• message The message returned by the callr R session (character)

4 Task

• stdout List column containing the contents of stdout during function execution

• stderr List column containing the contents of stderr during function execution

• error List column containing NULL values

Note: at present there is one field from the callr rsession::read() method that isn’t captured here,
and that’s the error field. I’ll add that after I’ve finished wrapping my head around what that
actually does. The error column, at present, is included only as a placeholder

Method get_workers(): Retrieve the workers

Usage:

Queue$get_workers()

Returns: A WorkerPool object

Method get_tasks(): Retrieve the tasks

Usage:

Queue$get_tasks()

Returns: A TaskList object

Method clone(): The objects of this class are cloneable with this method.

Usage:

Queue$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

queue <- Queue$new(workers = 4L)
wait <- function(x) Sys.sleep(runif(1))
for(i in 1:6) queue$add(wait)
queue$run()

Task R6 Class Representing a Task

Description

A Task stores a function, arguments, output, and metadata.

Task 5

Details

A Task object is used as a storage class. It is a container used to hold an R function and any
arguments to be passed to the function. It can also hold any output returned by the function, anything
printed to stdout or stderr when the function is called, and various other metadata such as the process
id of the worker that executed the function, timestamps, and so on.

The methods for Task objects fall into two groups, roughly speaking. The get_*() methods are
used to return information about the Task, and the register_*() methods are used to register
information related to events relevant to the Task status.

The retrieve() method is special, and returns a tibble containing all information stored about
the task. Objects further up the hierarchy use this method to return nicely organised output that
summarise the results from many tasks.

Methods

Public methods:

• Task$new()

• Task$retrieve()

• Task$get_task_fun()

• Task$get_task_args()

• Task$get_task_state()

• Task$get_task_id()

• Task$get_task_runtime()

• Task$register_task_created()

• Task$register_task_waiting()

• Task$register_task_assigned()

• Task$register_task_running()

• Task$register_task_done()

• Task$clone()

Method new(): Create a new task. Conceptually, a Task is viewed as a function that will be
executed by the Worker to which it is assigned, and it is generally expected that any resources the
function requires are passed through the arguments since the execution context will be a different
R session to the one in which the function is defined.

Usage:
Task$new(fun, args = list(), id = NULL)

Arguments:

fun The function to be called when the task executes.
args A list of arguments to be passed to the function (optional).
id A string specifying a unique task identifier (optional).

Returns: A new Task object.

Method retrieve(): Retrieve a tidy summary of the task state.

Usage:

6 Task

Task$retrieve()

Returns: A tibble containing a single row, and the following columns:
• task_id A character string specifying the task identifier
• worker_id An integer specifying the worker process id (pid)
• state A character string indicating the task status ("created", "waiting", "assigned", "run-

ning", or "done")
• result A list containing the function output, or NULL
• runtime Completion time for the task (NA if the task is not done)
• fun A list containing the function
• args A list containing the arguments
• created The time at which the task was created
• queued The time at which the task was added to a Queue

• assigned The time at which the task was assigned to a Worker

• started The time at which the Worker called the function
• finished The time at which the Worker output was returned
• code The status code returned by the callr R session (integer)
• message The message returned by the callr R session (character)
• stdout List containing the contents of stdout during function execution
• stderr List containing the contents of stderr during function execution
• error List containing NULL

Note: at present there is one field from the callr rsession::read() method that isn’t captured here,
and that’s the error field. I’ll add that after I’ve finished wrapping my head around what that
actually does. The error column, at present, is included only as a placeholder

Method get_task_fun(): Retrieve the task function.

Usage:
Task$get_task_fun()

Returns: A function.

Method get_task_args(): Retrieve the task arguments

Usage:
Task$get_task_args()

Returns: A list.

Method get_task_state(): Retrieve the task state.

Usage:
Task$get_task_state()

Returns: A string specifying the current state of the task. Possible values are "created" (task
exists), "waiting" (task exists and is waiting in a queue), "assigned" (task has been assigned to
a worker but has not yet started), "running" (task is running on a worker), or "done" (task is
completed and results have been assigned back to the task object)

Method get_task_id(): Retrieve the task id.

Task 7

Usage:
Task$get_task_id()

Returns: A string containing the task identifier.

Method get_task_runtime(): Retrieve the task runtime.

Usage:
Task$get_task_runtime()

Returns: If the task has completed, a difftime value. If the task has yet to complete, a NA value
is returned

Method register_task_created(): Register the task creation by updating internal storage.
When this method is called, the state of the Task is set to "created" and a timestamp is recorded,
registering the creation time for the task. This method is intended to be called by Worker objects.
Users should not need to call it.

Usage:
Task$register_task_created()

Returns: Returns NULL invisibly.

Method register_task_waiting(): Register the addition of the task to a queue by updating
internal storage. When this method is called, the state of the Task is set to "waiting" and a
timestamp is recorded, registering the time at which the task was added to a queue. This method
is intended to be called by Worker objects. Users should not need to call it.

Usage:
Task$register_task_waiting()

Returns: Returns NULL invisibly.

Method register_task_assigned(): Register the assignment of a task to a worker by updat-
ing internal storage. When this method is called, the state of the Task is set to "assigned" and a
timestamp is recorded, registering the time at which the task was assigned to a Worker. In addi-
tion, the worker_id of the worker object (which is also it’s pid) is registered with the task. This
method is intended to be called by Worker objects. Users should not need to call it.

Usage:
Task$register_task_assigned(worker_id)

Arguments:

worker_id Identifier for the worker to which the task is assigned.

Returns: Returns NULL invisibly.

Method register_task_running(): Register the commencement of a task to a worker by
updating internal storage. When this method is called, the state of the Task is set to "running"
and a timestamp is recorded, registering the time at which the Worker called the task function.
In addition, the worker_id is recorded, albeit somewhat unnecessarily since this information is
likely already stored when register_task_assigned() is called. This method is intended to be
called by Worker objects. Users should not need to call it.

Usage:

8 TaskList

Task$register_task_running(worker_id)

Arguments:

worker_id Identifier for the worker on which the task is starting.

Returns: Returns NULL invisibly.

Method register_task_done(): Register the finishing of a task to a worker by updating in-
ternal storage. When this method is called, the state of the Task is set to "done" and a timestamp
is recorded, registering the time at which the Worker returned results to the Task. The results
object is read from the R session, and is stored locally by the Task at this time. This method is
intended to be called by Worker objects. Users should not need to call it.

Usage:
Task$register_task_done(results)

Arguments:

results Results read from the R session.

Returns: Returns NULL invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Task$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

TaskList R6 Class Representing a Task List

Description

A TaskList stores and retrieves one or more tasks.

Details

The TaskList class is used as a storage class. It provides a container that holds a collection of
Task objects, along with a collection of methods for adding, removing, and getting Tasks. It can
also report on the status of the Tasks contained within the list and retrieve results from those Tasks.
What it cannot do is manage interactions with Workers or arrange for the Tasks to be executed.
That’s the job of the Queue.

Methods

Public methods:
• TaskList$new()

• TaskList$length()

• TaskList$add_task()

TaskList 9

• TaskList$remove_task()

• TaskList$get_task()

• TaskList$get_state()

• TaskList$get_tasks_in_state()

• TaskList$retrieve()

• TaskList$clone()

Method new(): Create a new task list

Usage:
TaskList$new()

Method length(): Return the number of tasks in the list

Usage:
TaskList$length()

Returns: Integer

Method add_task(): Add a task to the TaskList

Usage:
TaskList$add_task(task)

Arguments:

task The Task object to be added

Method remove_task(): This method removes one or more tasks from the TaskList.

Usage:
TaskList$remove_task(x)

Arguments:

x Indices of the tasks to be removed

Method get_task(): Return a single Task contained in the TaskList. The Task is not removed
from the TaskList, and has reference semantics: if the listed task is completed by a Worker, then
the status of any Task returned by this method will update automatically

Usage:
TaskList$get_task(x)

Arguments:

x The index the task to return

Returns: A Task object

Method get_state(): Return the status of all tasks in the TaskList.

Usage:
TaskList$get_state()

Returns: A character vector specifying the completion status for all listed tasks

Method get_tasks_in_state(): Return a list of tasks in a given state

10 TaskList

Usage:
TaskList$get_tasks_in_state(x)

Arguments:

x The name of the state (e.g., "waiting")

Returns: A TaskList object

Method retrieve(): Retrieves the current state of all tasks.

Usage:
TaskList$retrieve()

Returns: Returns a tibble containing the results of all tasks and various other useful metadata.
Contains one row per task in the TaskList, and the following columns:

• task_id A character string specifying the task identifiers
• worker_id An integer specifying the worker process ids (pid)
• state A character string indicating the status of each task ("created", "waiting", "assigned",

"running", or "done")
• result A list containing the function outputs, or NULL
• runtime Completion time for the task (NA if the task is not done)
• fun A list containing the functions
• args A list containing the arguments passed to each function
• created The time at which each task was created
• queued The time at which each task was added to a Queue

• assigned The time at which each task was assigned to a Worker

• started The time at which a Worker called each function
• finished The time at which a Worker output was returned for the task
• code The status code returned by the callr R session (integer)
• message The message returned by the callr R session (character)
• stdout List column containing the contents of stdout during function execution
• stderr List column containing the contents of stderr during function execution
• error List column containing NULL values

If all tasks have completed this output is the same as the output as the run() method for a Queue
object.
Note: at present there is one field from the callr rsession::read() method that isn’t captured here,
and that’s the error field. I’ll add that after I’ve finished wrapping my head around what that
actually does. The error column, at present, is included only as a placeholder

Method clone(): The objects of this class are cloneable with this method.

Usage:
TaskList$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Worker 11

Worker R6 Class Representing a Worker

Description

A Worker manages an external R session and completes tasks.

Details

The Worker class interacts with an external R session, and possesses methods that allow it to work
with Task objects. At its core, the class is a thin wrapper around a callr::r_session object, and
in fact the session object itself can be obtained by calling the get_worker_session() method. In
most cases this shouldn’t be necessary however, because Worker objects are typically created as
part of a WorkerPool that is managed by a Queue, and those higher level structures use the methods
exposed by the Worker object.

Methods

Public methods:
• Worker$new()

• Worker$get_worker_id()

• Worker$get_worker_state()

• Worker$get_worker_runtime()

• Worker$get_worker_task()

• Worker$get_worker_session()

• Worker$try_assign()

• Worker$try_start()

• Worker$try_finish()

• Worker$shutdown_worker()

• Worker$clone()

Method new(): Create a new worker object.

Usage:
Worker$new()

Returns: A new Worker object.

Method get_worker_id(): Retrieve the worker identifier.

Usage:
Worker$get_worker_id()

Returns: The worker identifier, which also the process id for the R session

Method get_worker_state(): Retrieve the worker state.

Usage:

12 Worker

Worker$get_worker_state()

Returns: A string specifying the current state of the R session. Possible values are:
• "starting": the R session is starting up.
• "idle": the R session is ready to compute.
• "busy": the R session is computing.
• "finished": the R session has terminated.

Importantly, note that a task function that is still running and a task function that is essen-
tially finished and waiting to return will both return "busy". To distinguish between these two
cases you need to use the poll_process() method of a callr::rsession, as returned by
get_worker_session().

Method get_worker_runtime(): Return the total length of time the worker session has been
running, and the length of the time that the current task has been running. If the session is finished
both values are NA. If the session is idle (no task running) the total session time will return a value
but the current task time will be NA.

Usage:
Worker$get_worker_runtime()

Returns: A vector of two difftimes.

Method get_worker_task(): Retrieve the task assigned to the worker.

Usage:
Worker$get_worker_task()

Returns: The Task object currently assigned to this Worker, or NULL.

Method get_worker_session(): Retrieve the R session associated with a Worker

Usage:
Worker$get_worker_session()

Returns: An R session object, see callr::r_session

Method try_assign(): Attempt to assign a task to this worker. This method checks that the task
and the worker are both in an appropriate state. If they are, both objects register their connection
to the other. This method is intended to be called by a WorkerPool or a Queue.

Usage:
Worker$try_assign(task)

Arguments:
task A Task object corresponding to the to-be-assigned task.

Returns: Invisibly returns TRUE or FALSE, depending on whether the attempt was successful.

Method try_start(): Attempt to start the task. This method checks to see if the that worker
has an assigned task, and if so starts it running within the R session. It also registers the change
of status within the Task object itself. This method is intended to be called by a WorkerPool or a
Queue.

Usage:
Worker$try_start()

WorkerPool 13

Returns: Invisibly returns TRUE or FALSE, depending on whether the attempt was successful.

Method try_finish(): Attempt to finish a running task politely. This method checks to see if
the worker has a running task, and if so polls the R session to determine if the R process claims
to be ready to return. If there is a ready-to-return task the results are read from the R process and
returned to the Task object. The task status is updated, and then unassigned from the Worker.
This method is intended to be called by a WorkerPool or a Queue.

Usage:
Worker$try_finish(timeout = 0)

Arguments:
timeout Length of time to wait when process is polled (default = 0)

Returns: Invisibly returns TRUE or FALSE, depending on whether the attempt was successful.

Method shutdown_worker(): Attempt to shut down the R session gracefully, after making an
attempt to salvage any task that the worker believes it has been assigned. The salvage operation
depends on the state of the task. If the Task has been assigned but not started, the Worker will
return it to a "waiting" state in the hope that the Queue will assign it to another worker later, and
unassign it. If the Task is running, the Worker will attempt to read from the R session and then
register the Task as "done" regardless of the outcome. (The reason for this is to ensure that tasks
that crash or freeze the R session don’t get returned to the Queue).

Usage:
Worker$shutdown_worker(grace = 1000)

Arguments:
grace Grace period in milliseconds. If the process is still running after this period, it will be

killed.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Worker$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

WorkerPool R6 Class Representing a Worker Pool

Description

A WorkerPool manages multiple workers.

Details

The implementation for a WorkerPool is essentially a container that holds one or more Worker
objects, and posesses methods that allow it to instruct them to assign, start, and complete Tasks. It
can also check to see if any of the R sessions associated with the Workers have crashed or stalled,
and replace them as needed.

14 WorkerPool

Methods

Public methods:
• WorkerPool$new()

• WorkerPool$get_pool_worker()

• WorkerPool$get_pool_state()

• WorkerPool$try_assign()

• WorkerPool$try_start()

• WorkerPool$try_finish()

• WorkerPool$refill_pool()

• WorkerPool$shutdown_pool()

• WorkerPool$shutdown_overdue_workers()

• WorkerPool$clone()

Method new(): Create a new worker pool

Usage:
WorkerPool$new(workers = 4L)

Arguments:
workers The number of workers in the pool.

Returns: A new WorkerPool object.

Method get_pool_worker(): Return a specific Worker

Usage:
WorkerPool$get_pool_worker(x)

Arguments:
x An integer specifying the index of the worker in the pool.

Returns: The corresponding Worker object.

Method get_pool_state(): Return a summary of the worker pool

Usage:
WorkerPool$get_pool_state()

Returns: A named character vector specifying the current state of each worker ("starting",
"idle", "busy", or "finished"). Names denote worker ids, and the interpretations of each return
value is as follows:

• "starting": the R session is starting up.
• "idle": the R session is ready to compute.
• "busy": the R session is computing.
• "finished": the R session has terminated.

Method try_assign(): Attempt to assign tasks to workers. This method is intended to be called
by Queue objects. When called, this method will iterate over tasks in the list and workers in the
pool, assigning tasks to workers as long as there are both idle workers and waiting tasks. It returns
once it runs out of one resource or the other. Note that this method assigns tasks to workers: it
does not instruct the workers to to start working on the tasks. That is the job of try_start().

WorkerPool 15

Usage:
WorkerPool$try_assign(tasks)

Arguments:

tasks A TaskList object

Returns: Invisibly returns NULL

Method try_start(): Iterates over Workers in the pool and asks them to start any jobs that
the have been assigned but have not yet started. This method is intended to be called by Queue
objects.

Usage:
WorkerPool$try_start()

Returns: Invisibly returns NULL

Method try_finish(): Iterate over Workers in the pool and checks to see if any of the busy
sessions are ready to return results. For those that are, it finishes the tasks and ensures those results
are returned to the Task object. This method is intended to be called by Queue objects.

Usage:
WorkerPool$try_finish()

Returns: Invisibly returns NULL

Method refill_pool(): Check the WorkerPool looking for Workers that have crashed or been
shutdown, and replace them with fresh workers.

Usage:
WorkerPool$refill_pool()

Returns: This function is called primarily for its side effect. It returns a named character
documenting the outcome, indicating the current state of each worker: should not be "finished"
for any worker. Names denote worker ids.

Method shutdown_pool(): Terminate all workers in the pool.

Usage:
WorkerPool$shutdown_pool(grace = 1000)

Arguments:

grace Grace period in milliseconds. If a worker process is still running after this period, it will
be killed.

Returns: This function is called primarily for its side effect. It returns a named character
documenting the outcome, indicating the current state of each worker: should be "finished" for
all workers. Names denote worker ids.

Method shutdown_overdue_workers(): Terminate workers that have worked on their current
task for longer than a pre-specified time limit.

Usage:
WorkerPool$shutdown_overdue_workers(timelimit, grace = 1000)

Arguments:

16 WorkerPool

timelimit Pre-specified time limit for the task, in seconds.
grace Grace period for the shutdown, in milliseconds. If a worker process is still running after

this period, it will be killed.

Returns: This function is called primarily for its side effect. It returns a named character
documenting the outcome, indicating the current state of each worker: should be "finished" for
all workers. Names denote worker ids.

Method clone(): The objects of this class are cloneable with this method.

Usage:
WorkerPool$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Index

Queue, 2

Task, 4
TaskList, 8

Worker, 11
WorkerPool, 13

17

	Queue
	Task
	TaskList
	Worker
	WorkerPool
	Index

